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TAREE-DIMENSTONAL SUPERSONIC HQUILIBRIUM FLOW OF */503
A GAS AROUND BODIES AT THE ANGLE OF ATTACK

0O.N.Katskeva and P,I,Chushkin :
13400 ——
Determination of the purely supersonic zZcne of a thermody-
namically stable gas flow around a three~dimencional body.

A method of trigonometric approximation is developed for

the case of an arbitrary number of meridional planes. A

special variation of the numerical-characteristic method

is worked out for the determination of flow parameters. In

this technique, the numerical solution is developed by means

of bands perpendicular to the axis of the solid. Thé method

is said to ensure second-order accuracy and to make possible

the use of a continuous trigoncmetric approximation, thus

minimizing the number of layers and meridicnal planes to be

dealt with, | : | 7CLJ)kcit:”’#ﬂ_‘

Section 1. Introduction ,

The solution of the problem of supersonic flow around bodies of revolution
or other three-diménsional bodies moving at an angle of attack through the |
atmosphere may be most accurately and most effectively obtained by the aid of
numerical methods with computers,

This process is usually divided into two stages. The flow around the nose
.section of thé bedy is first calculated, The flow in this region may either be:

supersonic (if the body has a pointed conical nose) or transonic (if the body

#* Numbers in the margin indicate pagination in the original foreign text.
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has a blunt nose).

In the second stage, the vure supersonic region of the flow beyond the riose
cone of the body is¢ calculated. The initial data obtained in the first stage
of the solution are used in solving the Cauchy problem for the system of hyper-

bolic-type equations.

Various numerical methods may be used for determining the parameters of a
three-dimensional flow in the pure supersonic region. The method of finite dif-
ferences has veen applied to the calculation of three-dimensional supersonic
flow around bodies (Bibl.l). A method of solution for this three-~dimensional
problem by the numerical method of integral relations has also been presented
(Bitl.2).

The numerical method of characteristics, which is widely used to solve two-
dimensional problems of gas dynamics, is only just beginning to find application
in the calculation of three-dimensional supersonic gas flows. A tetrahedral
scheme of the three-dimensional method of characteristics has been given
kBibl.B). Other schemes have bsen discussed (Bibl.l)., Although the generali-
iation of the method of characteristics to the three-dimensional case involves
no fundamental mathematical problems, the practical execution of the complete

" three-dimensional method of characteristics on computers does encowter diffi-
culties due to the complex behavior of the characteristic surfaces, the unwieldy
computational algorithm and the long programs, which demand a large computer
mMemory., |

In this connection, 2 numerical method that seems promising is one in which, .

by means of approximations in one of the §ariables (for instance in the angular-

fariable ¥ in the case of cylipdrical coordinates), the three-dimensional /504 —

system of differential equations of the problem can be transformed into a two-

2



dimensional system of differential equations, The latter system will contain a
larger number of unknown functions, since it vill also contain the values of the
approximated functions in all ccordincte planes on which they are interpolated
(i.e., in the case of cylindrical coordinates, on all the conéidered meridional
planes ¥ = const), This system of equations in two variables may be solved by
the two-dimensional method of characteristics,

The idea of considering the lines of intersection of the three-dimensicnal
characterisiic surfaces with the coordinate planes, instead of these surfaces
themselves, has been proposed (Bibl.5). Trigonometric approximations on the
variable § were first used by Sychev (Bibl.6) for calcviating the spatial supsr-
sonic flow arcund bodies of revolution at the angle of attack, In that case,
the solution of the problem was reduced to the application of the two-dimension-
al method{bf characteristics in two meridional planes, parallel to the oncoming
flow. >4

In the present'wak, we consider the calculation of ths pure supersonic
region of flow over bodies with a flow of gas in thermodynamic eguilibrium
around them, Here, the method of trigonometric approximations with a variable ¢
is developed for the case of an arbitrary number of meridional planes. To de-
termine the flow parameters, we developed a special scheme of the method of
characteristics in which the numerical solution is‘cohstructsd by layers per-
pendicular to the body axes, On each layer the parameters are calculated at
certain fixed points, from which two-dimensional characteristics lying in the
meridional planes under consideration are laid off in the direction of the pre-.
ceding layer. This computaticnal scheme yields second-order accuracy and makes
it poésible to use straight-through trigonometric approximations, which ulti-

mately pefmits the use of fewer meridional planes and layers,

3
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A brief description of our cémputational scheme has been given elsewhere
(Bibl.2). In a previous report (Bibl,7), we investigated this rumerical method
of characteristics by layers in the special case of supersonic axisymmetric flow
around a body of revolution iu a flow of a perfect gas at zero angle of attack.

Two papers have recently been published (Bibl.8, 9) applying & combiration
of the two-dimensional method of characteristics and the method of finite aif-
ferences to the problem of tnree-~dimensional supersonic flow around a body., A
number of examples of cafculated flows have been briefly mentioned elsewhere
(Pibl.8). In the solution developed by the author (Bibl.8), the third variable
is already eliminated (as it is in our own method) in the initial three-dimen- |
sional system of equations by the aid of an approximate representation of the

corresponding partial derivatives., Hcwever, the mentioned computational method

‘(Bibl.8) has certain shortcomings, Its accuracy is of the first order; in cal-

culation by layers, the two-dimensional characteristics are here produced from
the preceding layer in the direction of the new layer, and no conversions are
made to allow for it. The partial derivatives to be eliminated are determined
from the difference of the corresponding functionz on two adjacent interpolation
plenes, and a large number of such planes must therefore be introduced. Owing
to the construction of the solution in ordinary Cartesian or c¢ylindrical co-

ordinates (without "straightening" the surfaces of the body and the shock wave ),

the calculation of the approximate partial derivatives close to these sur- - /505

faces becomes extremely complicated.

Section 2, The Equations of the Problem

Let a supersonic uniform flow of a nonviscous thermally nonconducting gas

in a state of thermodynamic equilibrium flow around a certain body at a velo-

L
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city Vo and an angle of attack w. Assume, for simplicity, that the body has a
plane of symmetry parallel to the velocity vector of the relative flow; it may,
in particular, be a solid of revolution, Consider the calculation of the pure
supersonic three-dimensional flow region between the surface of the body and the
shock wave, We will assume that the body is rather smooth, and confine the
calculation tc cases in which no secondary shock waves appear within the flow

region.

Fig.l

Let us use the cylindrical coordinate sysfem.x, r, ¥, fixed in the body
(Fig.l). Let the origin of coordinates be located at the lsading edge of the
body, and let the x axis be direcied along the body axis, Let the value ¥ = O
correspond to the windward side, and § = n to the leeward side, By virtue of
the symmetry of flow, it will be sufficient to consider the region 0 < ¢ s 1,

In calculating the purely supersonic flow region, it is neceszary to solve
the Cauchy problem for a system of differential equations of hyperbolic type,
depending on the three variebles x, r, ¥. Let us assume the initial Cauchy
data (i.e., the fields of all the required gas-dynamic functions) tp be known
in some plane x = Xo, passing through the supersonic region,

Let us take the system of equations of gas dynamics describing the steady-

state equilibrium three-dimensional flow of gas in the following form: o

r

paVV + VVp =0, o(VV)V+4Vp=0, VVem=0, (2:1)

b
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where V, p, p, s and a denote respectively the velocity vector, pressure, dens-
ity, entropy, and velocity of sound.

To determine the temperature T, we use the thermodynamic equality

dl’ == qds +- gdp, : (2.2)
where T 1 ( i :)
4 = = hy ),
? he' ! g hy’ Y P

Here, h denotes the enthalpy, while the subscripts and primes denote the /506

corresponding partial derivatives, The density p and the enthalpy h in a gas
flow in thermodynamic equilibrium are connected with the temperature T and the

pressure p by the well-known relations:
p=p(T,p), h = h(T,p), (2.3)
which, for the case of air, are represented in analytic form by the aid of

approximations [cf, (Bibl.10)]., To calculate the velocity of sound a, we uss

the relation

(2.4)

Equations (2.1) - (2.4) thus form a complete system describing the equi-
librivm flows of a real gas, In thie system, we will consider all quuantities
to be dimensionless and take as the characteristic quantities some linear di-
mension (for instance the oblatenesy or nose radius, ry), the velocity and
density of the relative flow V, and pm,. and the gas constant R, Then the di~
mensionless pressure will be given by the quantity p. V2 , the temperature by the
quantity Vo/R, the enthalpy by the quantity V2, and the entropy by the quanti-
ty R.

For an ideal gas with a constant adiabatic iﬁdex x, e4s.{2.1) ~ (2.2) keep

their form, while €33.(2.3) - (2.4) in these dimensionless variables reduce to

6
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the following:

1—x P X D

Let us now w-ite egs.(2.,1) in cylindrical coordinates:

1 ow op dp , wop
( + +T ap T )+u75£+v-3;-_ T'a‘p"_o’
ou wou 1 op 7
"oz TV +_r—3{|?+ p 0z =0,
& 2
u_v+v_6‘_v_+£2_£;_+_i_6_&= , (2.6)

"a et T T T =
w 09s
"'—+ h—r"}'Th—‘B 0,

where u, v, w are, respectively, thg values of the velocity components V in the
directions of the x, r, § coordinates,

Thus, the system (2,5) defines five fundamental functions: the velocity
cemponents u, f, w, the pressure p, and the entropy s. The density p, the
temperature T, the enthalpy h, and the velocity of sound a which also enter that
system, in the general case of equilibrium flow of the gas, are expressed in
terms of these fundamental functions by the aid of the equalities (2,2) - (2.14).

The boundary conditions for the system (2.6), besides the Cauchy conditions
for x = x4, are conditions for the required §hock wave r = r,(x,¥), which are
the well-known relations for a strong gas-dynamic separation of flow, and the A;

no-fiow conditions on the given surface of the body r = ry(x,¥).

Section 3. Method of Solving the Problem /507

For the numerical solution of this problem of three-dimensional supersonic

flow around a body, let us use a method in which the initial system of three-

N
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: dimensional differential equations will be reduced to a system of two~dimension-
al differential equations for a larger number of functions.
i ,
First, let us substitute the variable r by a new independent variable €:
. 1
s = — '_'—"'b(z’ ‘p)lv
, where ¢ = r,(x,V) - ro(x,¥). Obviously, £ = O corresponds to the body and € = :
| = 1 to the shock wave, and
r=ef +r, (3.1)
/
In this case, the transformation formulas are of the form T
OF@ry) _ »OF(@EEY) | (@b )
oz T e at 2, 9% ! . ' ; .
oF (z,r,$) _ 1 OF(z, &%) , ~ o . ®
o e ag b
OF(z,r,¢) ra OF(a, §,9) | 0F (2.8 ¢) i
—o 0 e Ty .
oy & @é‘“- ay N
, where & s
| , )
’ A= =F(r' —Toa') —1gals p= “"“}E(M’ — roe’) 1*»”*?
% o B
and, for a solid of revolution r = ry(x), and r% by = O -
After passing to the variables x, E, ¥, the system (ng’w; can be written in: e

the following form:

a2t (GRS (s B E ) oo,

0% 6t /' pat
u—:;—:-+\’%§—+ p(g’;+ t 3’;—)4-0:‘—‘0,
fl—gfl;+v-g§+ ! g:-i-@: ‘ : G-2)
u‘z_l:. §+ ""g-,-m—-o. |
u%-}-v-a—g-;-m,;:o,

where
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. where, obviously, (3¥/a¥)o = (d¥/a¥), = 0. The numerical coefficients ey, fyy

1 1/ ow w a
v=— (A + v+ pw), Q=2 " P -
. Hw) 1 r(éqa Tl B ),
£ w du w { 6v
Oy —= —_ [ =
=T PTs (a\p w) (3.3)
1 ow 1 dp w ds
o={eg ) w=tg

The system (3.2) contains derivative functions in all three variasbles /508

X, €, ¥, To eliminate the derivatives with respect to ¢ from this system, let

P

us approximate the corresponding gas—dynamic functions with respect to this
variable, For this purpose, in the region O < § < m, let us consider 4 + 1 r
meridional planes equidistant in ¢, ¥ = ¢ = ku/s (k= 0, 1, o,. , £). Let us

further represent the odd F {i.e,, w) and the even F (i.e., r, u, v, p, 8)

{functions in ¥ by the interpcletional trigonometric polynomials

-t

1 |
F(z,t 9)= D ax(z, E)sinky, F(z, & $)= 2, ba(z, §)coskyp. . (3.1)

A=t A=0
The coefficients a, (x,£) and b,(x,E) are expressed in terms of the values of the

functions being interpolated on the meridional planes considered, and are of the

form
I~ l
m= Newly, b= . dusFy,

« ,= 1 j=0 , . ‘ -

‘fin which the subscripts j denote the values of F and Fat y =4, = jn/s. The
rumerical coefficients cyy, dyy for £ = 2, 3, 4 are given in the Table,

For the approximations (3.4) adopted, the values of the derivatives with
‘respect to ¥ in the planes § = ¥, are given by the expressious

aF N or e
() -Fon (Bl=fen o

)

4
-

|

9
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fer £ = 2, 3, L are given in the same Table. b
Thus, after application of the appraximations (3.L), the three-dimensici.al
system (3.2) becomes a uyster of differential equations in the two Zndependent
variables x and €, However, in this case the values of the required functions
on the meridionsl planes § = ¥, will eater intc the system (through the func-
tions &, containing derivatives with resvect to ¥). Consequently this two- =

1 =l A e maal o Sl e mamt AL e o -
ve considered on each of these meriiicnal pl 1ICS8,

cr

L me S ~"t -
dimensional SFaLE

S

fl

We find that, under the condition

(v+pw)? _ .

. ul >a?
. + 1+‘12

the twe—dimensional system (3.2) will be of the hyperboiic type and have two

~families of real chara.tericcics, The differential equations of the character-; i—
istics of the first amd second families may be represented in the following
form: - < =
:17::&~ 1( . u’§+a’ﬁ) * (3.6)
" dz e A u*—a® = 4y, .
.dg-“ i u;-—aq; ; (30?)
= ()=

"i*’-t

S vmee ~ | 1509

i ’ 7/“&? < /lﬁ \
o — (1S w — ia 183 — — A , K
b= irtww).  p=y —-+{i+e)| i) (3.8) 3
The differential compatibility equations for the characteristics of the -
first and second families may be written, respectively, in the {ollowing forms:.
dt + Kdp + Ldz =0, | (3.9) =
&K —Jdp+ Ndz =2, : (3.10)
where ‘ , |
i lo —_



pu?’
4 za*(L + 9) ut+a?p , dy
L= [0t 0, P o po— w0 3],
i uad{f—p) ut —a’p d
N—-—&;twg e p——" — Dy R +®;+u®.—uw£-].
Table
1=2

1 1
C o=, dﬂ=d¢%=du=ds=2". dn:dur-—wdu:‘:-—dn::-z—, dy =20,

&
wm=—m=1, =0, ju=—fu=—7, fu=0.

3=3
oy e BEEERENE o

k| Viey K 6y {
i 1 1 0 | 2 2 1 i
2 |1 |- 1t ]2]2]=2|-2 | T
k| 2V3¢«; 2 | 2.l 2| =2} 2
0| 6 |2 3 711 =2] 2 |.—
1 | 3 k 2 Vil \
2 |3 t 1 |31 ]3] )
3| 2| -8 2 |t -3l 3

1=4

i 4 2 3 i{ o 1 |2 3 4 5

k hoyg k 8d, T

{ Yi 2 V2 0] 1 2 (2] 2 4 :

4 2 0 —2 1 2 12Vz|0|-2V2 2

3 V2 —2 V2 2| 2 | 0 |—4| o 2 —

k 2y 3] 2 |evzol2vz| -2 .

olz42vz| =z |—24+2v3 |4] 1 | -2]2|-2] ¢ ‘

1| = 2 V2 — k 2ty i L

B -2 0 2 tla—vey 1 2 -t |-tV

3 1 —2V2 1 2l 1t |-2v? o0 |2Vi] —

| 4 2—-2V2 2 |—2—2z2V3 |3{i-V3| & |-2| 4 |1+V2
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In addition, characteristic properties are also exhibited by another /510
family of lines, defined by the eguations

d§

—

S =— (A D= A (3.11)

o=

By analogy to the axisymmetric flow, these lines will be arbitrarily tcrmed

Along such "streamlines™ the follewing relations will hold:

"atreexiines",
N (3.12)
Biv — dw + Cdz == 0, :
1
du + Gdv + Pdp + Qdz = 0, (3.13)
ds + Biiz = 0, (3.14)
whey 4
W e’f B=u’ C=T(u®3_®‘)' G=g’
P=—, Q=—(B:+i0), E=—.
. P u . /1

We note that by combining egs.(3.12) and (3.13) we can obtain still another

G relation which will be valid along the Mstreamlines™:

é—d(uz+v’+wz)+—2~dp+—3;(u®z+vd)3+w‘1?‘)dz=0. | -
The differential eguations of the characteristics and of the Wstreamlines®
and the resultant rclations along these lines, for the system (3.2), are of a
form closely wescmbling that of the corresponding equations and relations for
the system of equations of gas dyna..mics in the axisymmetric case, If, in
‘ kqs. (3.6) - (3.1L), we set w = VO and p = 0, it is easy to derive the equatiuns
for axisymmetric flow in the variables x,f in the form given elsewhere (Bibl.7)

for an idea;!, gas,

12 .



Section L, Numerical Scheme of the Method of Character:stics

We shall now integrate the system of hyperbolic-type differential equa-
tions (3.2) by the numerical method of characteristics, In connection with the
use of an approximation of the type (3.4) in solving the problem, it will be
expedient to use a special scheme of the method of numerical characteristics in-
stead of the standard schemes. In this special scheme, the calculatioﬁ is per-
formed by layers bounded by planes x = const, and the characteristics on each
new laver are produced in the direction toward the preceding layer, through /511
selected points with values of € = const,

To solve the problem, the differential equations of the characteristics and
of the "streamlines" and the relations along these lines [egs.(3.6) - (3.14)]
are considered on each of the 4 + 1 meridional planes ¢ = ¥, (k = 0, 1, oes , i)
introduced, These equations and relations are then represented in the form of
finite differences accordihg to a scheme of second-order accuracy. The result-
ant system of finite equations, which contains the values of the gas-dynamic
functions on all meridional plares, is sclved by iteration.

We will discuss in some detail the computational scheme of the method of
characteristics, As already assumed above, on some layer x = xo, located be-
tween the body‘and the shock wave in the hyperbolic region, let there be known
khe fields of the velocity components u, v, w, of the pressure p, of the entropy
s, and of the temperature T, as well as the radius of the shock wave r, and the
derivative ry'. Of course, let the geometry of the bedy, i.e,, the functions
rb(xf:Sifiﬁi)ax,ﬁ), also be prescribed, Let us select 4 + 1, the number of the
. meridional planes ¥ = ¥y,(k = 0, 1, ses, ), énd in each plane let us consider
n + 1 points with values € = €, = m/n (m = 0, 1, ..., n); let us take these

values € = £, as the same for all ¥ = ¥,, From the known fields of the funda-
13 -
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mental functions, we then obtain the initial Cauchy data at all points with the
coordinates xn, €., ¥xo Let us now determine the values of the fundamental
functions on the new layer x = X% +AX at points with the same €., Yy«

The flow parameters cn the new layer are calculated in the following se-
gquwice: First we calculate the points cn the shock wave (E = 1) at all values
cf ¢ = ¥, Then we deteruine the gas-dynamic parameters at the interior points
of the region, using the iteration method to solve the system of corresponding
finite-difference equations for the individual value of € = €4, and simultane-~ L
ously for all ¥ = ¢,. Moving from the shock wave toward the body, we calculate
the flow parameters at all considered points along the interior lines corre-
sponding tc <uvccessively decreasing values of € = €,, Finally, for all ¢ = ¥,
we calculebe the points along the contour of the cross section of the body
(€ - o). |

Let us now consider in detail the solution scheme of the individual ele-
mentary problems of the method of characteristics: determination of the flow
parameters at the points on the shock wave, at interior points, and at points on

the body surface,

1. Point on the Shock Wave

Here the discontinuity relations are used to find the gas dynamic functions
immediately beyond the shock wave, In the case of equilibrium flow of the gas,

let us take these relations in the form

p_p,-_-_(i—%)cos? (n, Vo), (4.1)

""‘““é%(“*'i‘)’ (4.2)

14
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cos(n, ¥)

cos(n, Vo)

where the subscript « denotes the parameters of the relative flowdyp = p - p,

while, for the angle between the normal n to the surface of the shock wave and

the velocity vector of the relative flcw V_,we have

6

cos(n, Vo) =

where

8 = rv'cos u 4 sin e cos g +-

Y1+ rx2 4 (r//r )2 ,

rw'

Tw

sinasiny.

(4.3)

bbviously, in our dimensionless variables, the velocity component of the rela-

tive flow normal to the shock wave, will be

Vo = cos (n, VQ).

(4.4)

These relacions on the shock wave muist be associated with the well-known

relations (2.3) between p, h, p, and T in equilibrium flow as well as with

eq.(2.2) which defines the entropy s in terms of these four functions,

Let us

rewrite the expressions for the velocity components beyond the shock wzve as

follows:

u=oosa—Ap2°-‘3-,

’

v= —sinacos1p+Ap—i-.

W= sinasinvb—ApL—-

?
we

rd °

(4e5)

!

For the case of an ideal gas, when neither tlie temperature T nor tie en-

‘thalpy h need be considerci, the relations on the shock wave are simplified, 3

15



In that case, the pressure, density, and entropy beyond the shock wave are cal-
culated by the explicit formulas

2 i
=l (Ve ——-),
& u+1(V" M,.,z)

P T =D/ F DIAS (I~ Vo) ' (4.6)
4 lnfL

wn—1 p*

s =

while eys.(4.5) for the velocity components retain their form. In eqs.(L.6)
the velocity A, = V,/aes , referred to the critical velocity of sound a, , is

expressed in terms of the Mach number M, :

T (k)M
Anf = 24 (x— 1) Mo’

The points located along the shock wave on the new layer x = xo + Ax are
calculated by successive approximations., Consider first any of these points /513
3 (Fig.2a) in one of the meridional planes § = §,, for instance in the plane § =

= O, Here we assign the value of the derivative r,J close to the value of the

derivative at the preceding point 5 on the shock wave, The radius of the shock

wave at the moint 3 is then calculated by the formula

rus == s & o[ (Rx’) s + (Red’) S]A-'

and the value of cos(n, V_) by eq.{4.3).
In the case of equilibrium flow, at the point 3 the values of pressure pj —
and temperature T, are prescribed, and gz and h; are found from eq,(2.3). The
value of T is varied with the selected ps in such manner that eq.(L.l) is satis-
fied with the required accuracy., In turn, the value of ps is varied such that
[at the value of T, already selected by the condition (4e1)] eq.(L.2) is satis~.

fied. 1In this process of selecting the values of ps and Tz, any desired inter-.

16



polation or iteration schemes can be used. After completing the selection of
ps and T, the velocity components are determined by eqs.(4.5), and the value of

the entropy s; by eq.(2.2) written in finite-difference form along the shock

wave:
.
83==35+—q[Ts—T5"‘g(Pa—l’5)]- (L)

In the case of an ideal gas, the process of selecting ps and T, is no long-
er necessary, since egs,(L,6) permit a direct calculation of ps, ps, and s; from
the prescribed value of r,) at the point 3.

Further, starting from the point 3 we produce the characteristics of the
first family T in the direction of the preceding layer x = Xo, and represent
eqs, (3.6) and (3,9) in finite-difference form:

b =1 — 4iAz, : (4,.8)
ts — & + K(ps — p1) + LAz =0, (4.9)

From eq.(4.8) we find the coordinate £, of the point 1 on the layer x = x,,

5&1 3
]Vj/’ 2 S A
.3' p-,' & ,f 2 \\ﬂ
N N N N
l-L?—iJ.o
a V ¢

Fig.2

Using quadratic interpolation at three adjacent points on this known layer, we
then determine the values of all fundamental functions at the point 1, calculat-
ving the radius r; by eq.(3.1). We then check whether the equality (4.9) is
satisfied. In general, it will not be satisfied for arbitrarily chosen values
of r,} at the point 3, meaning that such a value of r,} must be changed for
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the ¥ = ¢, considered, This completes the calculation of one approximation for {
the point 3 located on the shock wave in one meridional plane § = ¥y. /[51L ’
This computational process is conducted successively to compute, in first
approximation, other points 3 on the shock wave for all remsining ¢ = ¥y, for
which the corresponding values of ry.} are prescribed for each ¢ = ¥y.
After completing the cycle of computations in first approximation, we pro-
ceed with an analogous computational process in the second and succeeding ap-
proximations for all ¢ = Yk = 0, 1, vee, 4) until values of ry} have been
selected such that all the equalities of the type of eq.(L.9) are simultaneously
satisfied, with the required degree of accuracy, for each ¥ = ¥,.
We note that the coefficients g and q in eq.(4.7) are the averages for the
points 3 and 5, while the coefficients A;, K, L entering into egs, (L.8) and (4.9)
are averaged for the points 1 and 3 (only in the first approximation is the co-
efficient A, used for the point 3). The derivatives of r,, u, v, w, and p with
respect to ¥, which enter into A, u, cos(n, Vw), and L, are taken in the first
approximation at the points 3, the same as at the corresponding points 5 on the
layer X = Xq In the following approximations, these derivatives are determined
by the aid.of the interpolation formulas (3.5) from the values of the functions

calculated in the preceding approximation,

2, Interior Point of the Region

We pass now to a description of the iteration process of calculating the
interior points of the flow region which are located on the layer x = xo +A4Xx,
at one value of € = €, and a series of values of ¥ = ¢ (k = 0, 1, ..., L),

Considering at. first any one meridional plane ¢ = ¥, , let us produce, from

the computational point 3, the characteristics of the first family I and of the
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second family II and the Mstreamline" IJT, which intersect the known plane x =
= X, at the points 1, 2,25d 4, in sequence (Fig.2b), The coordinates of these
points are determined from the finite-difference equations that follow from

eqs-(3¢6), (307), and (3011):

b=t —Aibr  (i=1,2,4)

By quadratic interpolation on the layer x = Xo, we find at these three points
€ = £, the quantities u, v, w, p, T and at the point /4 also the entropy s.
Further, on the basis of the compatibility relations (3.9) and (3.10)

written in finite~difference form, we express ps and (a¢

| . . :
Ps=Pl't'"m[§i—-'u“](Pi—Pz)'!'(‘V_[!)M]s
& = b1 — K(ps — p1) — LAz,

{4.10)

while from egs.(3.14) and (2.2), used along the "streaulins®, we obtain the fol-
lowing formulas for the entropy s; and the temperature Tj:
Sy = § — EM, (
‘. 4e11)
Ts=Ti+ q(ss — s1) + g(ps — p1). (4.12)
Let us now take the finite-difference analogs of the two remaining rela-

tions (3.12) and (3.13), valid along the ™streamlines", and eq.(3.8) for the -
quantity {. These three equalities permit determining the three velocity com~ -
ponents at the point 3: © /515

__ B{tfus— P(ps— pi) — QAz] — v} + (4 + Gls) (wi + CAz)
- 1+ Gl + Bps ’

(ue — P (ps — ps) — QAz + G (vs -+ psws)],

Uy = usga — WalWs.

Ws

(1.13)

ua =

1
14 GG

E;uations (4,10) - (Le13) make it possible tg calculate successively, at
ﬁ ’
19 \



o WEe .

the point 3, the quantities p, s, T, u, v, w. The density p, the enthalpy h,
and the velocity of sound a, entering into these expressions, are found by the
aid of eqs.(2,3) and (2.4), and the radius r by eq.(3.1).

In the case of an ideal gas, when the temperature T and the enthalpy h are
excluded from the fundamental functions, eq.(4.12) is omitted, while the densi-
ty o and the velocity of sound a are found in terms of p and s from egs.(2.5).

The above-described computational procedure is performed successively for
all points corresponding to the prescribed € = €, and to all considered § = {y.
In this way we calculate the first iteration for sulving the system of differ-
ence equations. An analogous computational cycle is repeated in the following
iterations, permitting the determination of all required functions with the re-
quired accuracy, The true signs are usually found after three iterations.

In the first iteration, the coefficients A; and the derivatives of u, v, w,

p, s with respect to ¢ that enter the quantities &, of eq.(3.3) are used for

’Zalculating the points 3, according to their values at the corresponding points

5 on the preceding laysr., In the system of difference equations (.10) - (4.13)
the coefficients X, L, J, N, E, g, 9, B, C, G, P, Q (as well as the coeffi-
cients A; in the succeeding iterations) are determined, respectively, from
points 3 and 1, 3 and 2, 3 and 4, The above-mentioned derivatives with respect
to ¥ in the second and following iterations are determined b& the interpolation

formles {3.5), using the data from the preceding iteration.

3. Point on the Body Surface

The calculation of the points on the body surface (£ = 0) in many respects
is similar to the calculation of the interior points of the flow region, and is

performed by successive iterations for all values of Vo= Y. %@ will describe

20



this computational procedure for one plane § = ¥, and for the case of equilib-
rium flow,

Let us construct the region of characteristics of the second family II,
passing through the considered points 3 on the surface of the body (Fig.2c).
The coordinate €z of the point 2 of the intersection of this characteristic with
the layer x = Xo will be 5 = -AgAx, At this point, the values of all funda-
mental functions are determined, as is conventional, by quadratic interpolation,

From eq.(3.10), taken in finite-differcrnce form, we cbtain

p3=pz+-1j(C3—§2+NA3)° (hell)

:

The no-flow condition ow%/the body surface, i.e., the condition that the

normal velocity compCiient is to vanish, leads at the point » L0 the equalicy

Astis + vs + paws =0, (L.15)
ilence, bearing in mind the definition (3.8) for the quantity {, we find . (516 )
§3 = —As. i {l«t-olé)

It is likewise obvious that the line 3-4 on the surface of the body is a "stream-
line'; consequently the relations (3.12) - (3.1h) are valid along it.

Writing these latter equalities in finite-difference form, as well as
eq.(2.2), will yield, in addition to eqs.(L.14) = (4.16), a system of equations
for ecalculating all fundamentel quantities at the point 3 on the surface of the
body. The formulas for determining the functions sz, Ts, us, vz, and 1}3 here
coincide with the corresponding eqs.(4.11) - (4.13) for an interior point of the
flow regign, while the pressure ps and the quantity (. are calcuiatrd fivqm

eqs.(L4.14) and (4.16). The density ps, the enthalpy hs, and the velocity of
21 SR
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sound as are found from egs.(2.3) -~ (2.4).

The coefficients entering the difference equations are averaged here in the
same way a&s in calculating an interior point. The chaanges in the computaticnal
scheame for the case of an idezl gas will be analégous.

After caiculating the flow parameters for the entire layer x = xz, +8x, the
accuracy of the solution can be checked, For this purpose, using the approxi-
mations adopted for the fundamental functions, the discharge and energy of the
gas are found by integration ove: this layer, after which we determine whether
or not the corresponding conditions of conservation are satisfied,

The computational grid, i.e. the number {4 + 1 meridicnal planes ¢ = ¥, (k =
= 0, 1, eee, ) aid Uhe number n + 1 points € =€, (m =0, 1, ..., n) in each

_plane, is selected according to the required accuracy. The use of trigonometric

. approximations and relatively smooth variation of the functions with ¥ in ue

‘34

case of smooth bodies at moderate angles of attack make it possible, for prac-
tical purposes, to confine the calculation to the range £ = L - 6, while n is
taken in the range of 25 - 50. The choice of the spacing 4x is governed by
stability considerations, 7

" We note one more consequence of eq.(3.1L). If, in the in;i.tial cross
section, the entropy on the body surface was everywhere thé same (i.e., 38/0} =
= 0), it will also remain constant along the entire body (naturally, on condi-
&on that no new shock waves are formed on the surface of the body). \This
, ‘;Loperty also foliows from a consideration of the flow around the surface of the

body within the framework of rigorous theory.

Secticn 5. Calculation Examples

This method has been used in calcuiating, for illustrative purposes, vg.rioué

22

H



-
P j’ X8
aos X230
xe3d
/
1 N
¢ 4-(215 78
Figo 5
P

ar

al

P
any -
h

aos -

810

Y
. |
!
(|
\ .
\
\
\
\
\
\
i
[




Y

cases of supersonic flow around blunted cones at an angle of attack in a stream
of ideal air (x = 1.4). The cones were of circular cross section, with a spher-
ically oblate nose, The cases differed in the vertex half-angle w, the Mach
number M, of the relative flow, and the angle of attack o, The initial Cauchy
data in the hyperbolic region were taken from available calculations of super-
sonic flow around a sphere (Bibl.11).

A few results of the calculations of three-dimensional supersonic Ilow
around a truncated cone w = 5° are given by Figs.3 - 6, referring to the cass
of M, = and o = 1, In all these graphs, the linear dimensions are given /518 __
in multiples of the nose radius, and the origin of the cylindrical system of
coordinates is located at the leading edge of the body.

The individual variants were calculated with different computational grids.

The nunber n, determining the number of points in each meridional plane, was
taken as n = 25, A compariscn with the corresponding calculations at n = 50
showed that this value.of n yielded satisfactory accuracy, The number 4 of
meridional planes was also varied in the calculations, All cases were calcul-
.ated for five meridional planes,{ = / (solid lines in the graphs), and some
cases for three meridional planes, L = 2 (circles in the graphs).

In Fig.3 the form.of the shock wave is plotted in sections ¢ = const, and
Fig.l gives the pressure distribution along the surface of the body {on the
linear segment of the generatrix),

Figs.5 - 6 give the variation in pressure between the shock wave and the

_ surface of the body along the layers x = const for 4 = Qand y =,

Finally, in Fig,7 the pressure distributionscalculated for 4 = L on a cone
w = 20° for M, =» and ¢ = 1¢° are compared with the corresponﬁing results (but
at M, = 20) obtained in (Bibl.12) by the finite-difference method (Bibl.l) and
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shown by the dashed line in the diagram,
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